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Abstract. On the basis of non-commutative q-calculus, we investigate a q-deformation of the classical Pois-
son bracket in order to formulate a generalized q-deformed dynamics in the classical regime. The obtained
q-deformed Poisson bracket appears invariant under the action of the q-symplectic group of transformations.
Within this framework we introduce the q-deformed Hamilton equations and we derive the evolution equa-
tion for some simple q-deformed mechanical systems governed by a scalar potential dependent only on the
coordinate variable. It appears that the q-deformed Hamiltonian, which is the generator of the equation
of motion, is generally not conserved in time but, in correspondence, a new constant of motion is gener-
ated. Finally, by following the standard canonical quantization rule, we compare the well-known q-deformed
Heisenberg algebra with the algebra generated by the q-deformed Poisson bracket.

PACS. 02.45.Gh; 45.20.-d; 03.65.-w; 02.20.Uw

1 Introduction

Quantum algebra and quantum groups arise as the under-
lying mathematical structure in several physical phenom-
ena. It has been shown that such a formalism can play
an important role in conformal field theory, exact in solu-
ble models in statistical physics [1] and in a wide range of
applications, from cosmic strings and black holes to solid
state physics problems [2–4].
Many physical applications have been investigated on

the basis of the q-deformation of the Heisenberg algebra [5–
9]. For instance, q-deformed Schrödinger equations have
been proposed in the literature [10, 11] and applications to
the study of the q-deformed version of the hydrogen atom
and of the quantum harmonic oscillator [12–14] have been
presented. In [15], the Weyl–Heisenberg algebra has been
studied within the framework of the Fock–Bargmann rep-
resentation, allowing a rigorous treatment of the squeezed
states, lattice quantum mechanics and Bloch functions.
The theory of the q-deformed harmonic oscillator,

based on the construction of SUq(2) algebra of q-deformed
commutation or anticommutation relations between cre-
ation and annihilation operators [16–18], has opened
the possibility of studying intermediate q-boson and q-
fermion statistical behavior [19, 20]. A kinetic approach
to this problem, within a semiclassical treatment, was
presented in [21]. Moreover, it has recently led to the ap-
plication of q-calculus in the construction of generalized
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statistical mechanics where nonextensivity properties can
arise from the q-deformed theory [22]. Along these lines,
generalized thermostatistics based on the formalism of
q-calculus was formulated in [23], whereas in [24] a q-
deformed entropy was applied to study a gas of q-deformed
bosons.
In the recent past, some tentative approaches to con-

structing a q-deformed version of classical mechanics were
investigated. The primary motivation for such a study is to
understand the origin of the q-deformed Heisenberg alge-
bra, which forms the basis of deformed quantum mechan-
ics. In other words, we can ask: how does one introduce
a q-deformed algebraic structure for the quantum plane
coordinates, such that, after canonical quantization, the q-
deformed Heisenberg algebra follows? This question was
investigated, for instance, in [25], where the quasi-classical
limit of the q-oscillator was discussed and a q-deformed
version of the Poisson bracket (PB) was derived in terms
of variables of the quantum plane. A related question is
how one can describe the dynamical evolution of a classi-
cal object existing in such a q-deformed quantum plane.
In [26], the author has presented a tentative formulation to
construct q-deformed classical mechanics based on the in-
troduction of a q-Lagrangian and a q-Hamiltonian, where
the equations of motion are derived from the q-deformed
analog of the Euler–Lagrange equation. A similar formula-
tion was presented in [27], where a deformed phase-space
was introduced based on the elliptic algebra with differ-
ent deformed parameters for the space coordinates and the
momenta.
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Finally, among the many motivations for the study
of a q-deformed generalization of classical mechanics, it
is important to mention the relevance of symmetries in
physics [28]. In this respect, quantum groups give a new
symmetric aspect for the resolution of classical problems.
Along these lines, [29] deals with the investigation of a set
of Poisson algebra structures obtained from elliptic quan-
tum algebra. It has been shown that the resulting Pois-
son structure contains the q-deformed Virasaro algebra,
which plays a central role in the resolution of several inte-
grable systems both in quantum mechanics and statistical
mechanics.
Recently, in [30], a possible definition of the q-deformed

PB was derived by requiring that it be invariant under the
action of the q-deformed symplectic group Spq(1), in anal-
ogy with the classical (undeformed) case, where PBs are
invariant under the action of the symplectic group Sp(1).
In this paper, we start by considering a q-deformed version
of the PB previously introduced, but follow another ap-
proach, and in some sense, give a more systematic deriva-
tion instead of the one adopted in [30].
In commutative classical mechanics, the PB between

two functions f(x, p) and g(x, p) can be defined through
the contraction of the corresponding Hamiltonian fields
Xf and Xg with the canonical symplectic form ω = dx∧
dp. In the same manner, we can define a q-deformed

version of the PB between two q-functions f̂(x̂, p̂) and

ĝ(x̂, p̂), defined on the noncommutative q-plane, through
the contraction of the corresponding q-Hamiltonian fields

X̂f̂ and X̂ĝ with the q-deformed canonical symplectic

form ω̂ = dx̂∧dp̂ (throughout this paper, we denote by
a hat the elements belonging to q-algebra to distinguish
them from elements belonging to ordinary commutative
algebra). We then attempt to formulate, by means of
the q-deformed Hamilton equations, a q-deformed clas-
sical mechanics describing the time evolution of a me-
chanical system. Finally, in analogy with the standard
canonical quantization method, where the (undeformed)
PB between canonically conjugate variables x and p are
replaced by the (undeformed) commutator of the cor-
responding quantum operators x and p, we discuss the
scenario of a possible canonical quantization within the
q-deformed framework, putting in correspondence the al-
gebra generated by the q-deformed PB between x̂ and p̂
with the well-known algebra generated by the q-deformed
commutator of the corresponding q-deformed operators
x̃ and p̃.
Our paper is organized as follows. After a brief review of

the derivation of the standard PB in the formalism of exte-
rior calculus, presented in Sect. 2, we introduce, in Sect. 3,
the q-commutative phase-space and recall the definition of
its q-calculus. On the basis of the previous sections, we are
able to obtain the most original result of our paper: the
introduction of a q-deformed PB in Sect. 4 and the for-
mulation of a possible q-deformed mechanics by means of
the q-Hamilton equations is presented in Sect. 5. In Sect. 6,
starting from the q-deformed PB, we explain a possible
derivation of the q-deformed Heisenberg algebra. Finally,
the conclusions are presented in Sect. 7.

2 The Poisson bracket in the commutative
phase space

We begin by recalling briefly the derivation of the standard
PB in the formalism of the exterior calculus, referring to
the relevant literature for the details [31, 32].
Let us consider the real plane R2 generated by the com-

mutative coordinates x1 ≡ x and x2 ≡ p and introduce the
associative algebra A = Fun(R2) of the functions on R2

freely generated by the elements x and p.
The tangent space TA onA is generated by the vectors

∂1 ≡ ∂x = ∂/∂x and ∂2 ≡ ∂p = ∂/∂p, which are linear op-
erators, i.e., ∂i(λf +µ g) = λ∂if +µ∂ig and satisfying the
Leibniz rule ∂i(x

j f) = δji f +x
j ∂if with i, j = 1, 2, where

f(x, p) and g(x, p) are smooth functions onA and λ, µ are
ordinary commutative numbers (C-numbers). Any vector
v can be spanned on the basis of ∂i as v = f

1 ∂x+f
2 ∂p,

where f i ∈ A.
In the same way, we introduce the cotangent space

(one-forms) T ∗A, generated by the elements dx and dp.
Any one-form ω can be spanned on this basis as ω =
dx g1+dp g2, where gi ∈A.
Higher order forms are constructed by means of the

differential operator d, which takes k-forms into (k+1)-
forms. In particular, starting from a function f ∈ A (0-
form), its differential is a one-form

df ≡ dx∂xf +dp ∂pf , (1)

and starting from a one-form ω = dx g1+dp g2, we obtain
the two-form

dω ≡ dx∧dp (∂pg2−∂xg1) , (2)

where we have introduced the exterior product between
two one-forms, that is linear (λω1 +µω2)∧ω3 = λ (ω1 ∧ω3)
+µ (ω2 ∧ω3), associative (ω1 ∧ω2)∧ω3 = ω1 ∧ (ω2 ∧ω3)
and skew-symmetric ω1 ∧ω2 =−ω2 ∧ω1 .
The d operator fulfills the following main properties:

d(λω+µω′) = λdω+µdω′ (linearity); d(f g) = df g+
f dg (Leibniz rule); dλ= 0; d(dω) = 0; and d(ω(k)∧ω(p)) =
dω(k)∧ω(p)+(−1)k ω(k)∧dω(p), where k and p are the de-
grees of ω(k) and ω(p), respectively.
Finally, we introduce the contraction operator iv(ω), in

the axiomatic way, through its main propriety listed below,

iv(f) = 0 ,

i∂i(dx
j) = δji ,

i(λ f ∂i+µ g ∂j)(ω) = λf i∂i(ω)+µ g i∂j (ω) , (3)

iv (λdx
i f +µdxj g) = λ iv(dx

i) f +µ iv(dx
j) g ,

i∂i (dx
1∧dx2) = δ1i dx

2− δ2i dx
1 .

In order to derive the PB and the algebra within this for-
malism, we begin by introducing the symplectic form

ω = dx∧dp , (4)

and define the Hamiltonian vector fieldXf, associated with
a function f ∈ A, through the relation

i
Xf
(ω) = d f . (5)
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From (4) and (5), taking into account the properties of the
contraction operator (3), it follows that, for any function f ,
the corresponding Hamiltonian vector fieldXf assumes the
expression

Xf ≡ ∂pf ∂x−∂xf∂p . (6)

As a consequence, we can write the PB between the two
functions f, g ∈ A through the relation

{
f, g
}
≡ iXg(df) = iXg iXf(ω) . (7)

It is easy to show, accounting for (6), that (7) can be writ-
ten in the usual form

{
f, g
}
= ∂xf ∂pg−∂pf∂xg . (8)

We recall the main properties of the PB defined through
(7), which are: bi-linearity {λf + µ g, h} = λ {f, h}
+µ {g, h} and {f, λ g+µh} = λ {f, g}+µ {f, h}, skew
symmetry {f, g} = −{g, f} and the Jacobi identity
{f, {g, h}}+{g, {h, f}}+{h, {f, g}}= 0.
We remark that (8) can also be expressed in the form

{
f, g
}
= ∂if J

ij ∂jg (9)

(repeated indexes are summed over), where we have intro-
duced the structure functions

J ij =
{
xi, xj

}
, (10)

which can be arranged in a 2× 2 matrix J . Taking into
account the expression of the symplectic form (4), we eas-
ily recognize that J is the symplectic unity, with entries
J ij = εij , where ε12 =−ε21 = 1.
It is easy to show that (9) is invariant in form under

a symplectic transformation Sp(1) on the plane R2

{
f, g
}
→
{
f ′, g′

}
= ∂′if

′ J ij ∂′jg
′ , (11)

with f ′ = f(x′, p′) and g′ = g(x′, p′) and

xi→ x′
i
= xj T ij , (12)

where T ij , the entries of a matrix T ∈ Sp(1), satisfies the
symplectic relation

T im J
mn T jn = J

ij . (13)

3 q-commutative differential calculus

In order to generalize the PB within the framework of
a q-deformed theory, we review the basic properties of the
q-commutative differential calculus.
The real quantum plane R̂2 is generated by the

q-commutative element x̂1 ≡ x̂ and x̂2 ≡ p̂, obeying the re-
lation [33]

p̂ x̂= q x̂ p̂ , (14)

which is invariant under the action of Glq(2) transform-
ations and q is the real deformation parameter. We denote
by Â = Fun(R̂2) the associative algebras freely generated
by the elements x̂ and p̂.
In analogy with the commutative case, we define the

q-tangent space T Â [34], generated by the q-derivatives
∂̂1 ≡ ∂̂x and ∂̂2 ≡ ∂̂p, whose action on the generators x̂i is
defined as [5]

∂̂i x̂
j = δ ji . (15)

They are linear operators satisfying ∂̂i(λ f̂ +µ ĝ) = λ ∂̂if̂ +
µ ∂̂iĝ, which fulfill the q-Leibniz rule

∂̂p p̂= 1+ q
2 p̂ ∂̂p+(q

2−1) x̂ ∂̂x ,

∂̂p x̂= q x̂ ∂̂p , (16)

∂̂x p̂= q p̂ ∂̂x ,

∂̂x x̂= 1+ q
2 x̂ ∂̂x ,

leading to the q-commutative derivative

∂̂p ∂̂x = q
−1 ∂̂x ∂̂p . (17)

Let us now introduce the q-cotangent space T ∗Â, gen-
erated by the elements dx̂ and dp̂. Any q-deformed one-
form ω̂ can be spanned on this basis as ω̂ = dx̂ ĝ1+dp̂ ĝ2,
where ĝi ∈ Â. We observe that dx̂i f̂ �= f̂ dx̂i, due to the
q-commutative structure of the q-calculus. Nevertheless,
accounting for the following relations

p̂dp̂= q2 dp̂ p̂ ,

x̂dp̂= q dp̂ x̂ , (18)

p̂dx̂= q dx̂ p̂+(q2−1) dp̂ x̂ ,

x̂dx̂= q2 dx̂ x̂ ,

any q-deformed one-form is well-defined and admits a unique,
left or right, expansion: ω̂ = f̂Li dx̂

i = dx̂i f̂Ri , where the
quantities f̂Ri and f̂

L
i can be obtained from each other by

means of (18).
Through the action of the operator d we can construct

higher order q-deformed forms. In particular, the differen-
tial of a q-function f̂ ∈ Â is given by

df̂ ≡ dx̂ (∂̂xf̂)
R+dp̂ (∂̂pf̂)

R , (19)

which, by means of (18), can be written equivalently in the
(left) form

df̂ ≡ (∂̂xf̂)
L dx̂+(∂̂pf̂)

L dp̂ . (20)

We recall that within the framework of the q-calculus, the
operator d fulfills the same formal properties as in standard
calculus. The elements dx̂ and dp̂ satisfy the relations

dp̂∧dp̂= 0 ,

dp̂∧dx̂=−q−1 dx̂∧dp̂ , (21)

dx̂∧dx̂= 0 ,
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where the exterior product is still linear and associative.
Finally, we introduce the contraction operator iv(ω) be-
tween q-deformed vectors and q-deformed forms, in the
axiomatic way, through the main properties listed below

iv̂(f̂) = 0 ,

i∂̂i(dx̂
j) = δ ji ,

i(λ f̂ ∂̂i+µ ĝ ∂̂j)(ω̂) = λ f̂ i∂̂i(ω̂)+µ ĝ i∂̂j (ω̂) , (22)

iv̂ (λdx̂
i f̂ +µdx̂j ĝ) = λ iv̂(dx̂

i) f̂ +µ iv̂(dx̂
j) ĝ ,

i∂̂k
(dx̂1∧dx̂2) = δ 1k dx̂

2− q−1 δ 2k dx̂
1 ,

which are formally identical to (3) with the difference that
now the ordering is important. A rigorous derivation of
these properties can be found in [34].
A realization of the above q-algebra and its q-calculus

can be accomplished by the replacements [35]

x̂→ x , (23)

p̂→ pDx , (24)

∂̂x→Dx , (25)

∂̂p→DpDx , (26)

where

Dx = q
x ∂x ⇒Dxf(x, p) = f(q x, p) , (27)

is the dilatation operator along the x direction (reducing to
the identity operator for q→ 1), whereas

Dx =
q2 x ∂x −1

(q2−1)x
, (28)

Dp =
q2 p ∂p −1

(q2−1) p
(29)

are the Jackson derivatives (JD) with respect to x and
p [36]. Their action on an arbitrary function f(x, p) is

Dx f(x, p) =
f(q2 x, p)−f(x, p)

(q2−1)x
, (30)

Dp f(x, p) =
f(x, q2 p)−f(x, p)

(q2−1) p
, (31)

which reduce to the ordinary derivatives when q goes to
unity. Therefore, as a consequence of the non-commutative
structure of the q-plane, in this realization the x̂ coordinate
becomes a C-number and its derivative is a JD whereas the
p̂ coordinate and its derivative are realized in terms of the
dilatation operator and the JD.

4 Poisson bracket in the q-commutative
phase space

On the basis of the q-commutative differential calculus, in
this section we derive the expression for the q-deformed PB
by following, in analogy, the same formal steps used in the

classical derivation reviewed in Sect. 2. To begin with, let
us introduce the q-deformed symplectic form

ω̂ = q−1/2 dx̂∧dp̂ , (32)

and define the q-Hamiltonian field X̂f, associated with the
function f̂ ∈ Â, through the relation

iX̂f
ω̂ = df̂ . (33)

According to q-calculus, the expression for X̂f is given by

X̂f = q
1/2
(
∂̂pf̂
)L
∂̂x− q

−1/2
(
∂̂xf̂
)L
∂̂p , (34)

which reduces to the standard Hamiltonian field (6) in the
q→ 1 limit.
We introduce the q-PB bracket between the q-deformed

functions f̂ and ĝ by means of the relation,
{
f̂ , ĝ
}
q
≡ iX̂ĝ(df̂) = iX̂ĝ iX̂f̂

(ω̂) . (35)

Accounting for (20) and the properties (22), we obtain the
general expression for the q-PB

{
f̂ , ĝ
}
q
≡ q1/2

(
∂̂pĝ
)L (
∂̂xf̂
)R
− q−1/2

(
∂̂xĝ
)L (
∂̂pf̂
)R
.

(36)

Properties of the q-PB (35) are consequences of the prop-
erties of the q-deformed contraction operator (22). In par-
ticular, they are bi-linear,

{
λ f̂ +µ ĝ, ĥ

}
q
= λ
{
f̂ , ĥ
}
q
+µ
{
ĝ, ĥ
}
q
, (37)

{
f̂ , λ ĝ+µ ĥ

}
q
= λ
{
f̂ , ĝ
}
q
+µ
{
f̂ , ĥ
}
q
, (38)

but, in general, they are not skew-symmetric. This can be
seen, for instance, if we consider the q-deformed generator

functions which can be constructed by setting f̂ ≡ x̂ and
ĝ ≡ p̂. The canonical q-Hamiltonian fields are, respectively,

X̂x =−q
−1/2 ∂̂p , (39)

X̂p = q
1/2 ∂̂x , (40)

and, after observing that, according to (15), (∂̂ix̂
j)L ≡

(∂̂ix̂
j)R, from (36) we immediately derive the q-deformed

structure functions for the q-Poisson algebra
{
x̂i, x̂j

}
q
= q1/2 ∂̂xx̂

i ∂̂p x̂
j− q−1/2 ∂̂px̂

i ∂̂x x̂
j . (41)

Their explicit values are obtained as follows
{
x̂, x̂
}
q
=
{
p̂, p̂
}
q
= 0 ,

{
x̂, p̂
}
q
= q1/2 , (42)

{
p̂, x̂
}
q
=−q−1/2 ,
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so that we easily obtain

{
x̂, p̂
}
q
=−q

{
p̂, x̂
}
q
. (43)

Finally, the Jacobi identity is trivially satisfied for the q-
structure functions

{
x̂i,
{
x̂j , x̂k

}
q

}
q
+
{
x̂j ,
{
x̂k, x̂i

}
q

}
q

+
{
x̂k,
{
x̂i, x̂i

}
q

}
q
= 0 . (44)

In [30] a q-deformed PBwas obtained by requiring that,
in analogy with the classical case, where standard PB is
invariant with respect to a symplectic transformation, the
q-PB should be invariant with respect to a q-symplectic
transformation. As a result, we obtained a q-PB formally
equivalent to (36) but with the replacement of q→ 1/q2.
It is also easy to see that the q-PB given in (36) is pre-
served under the action of a q-symplectic transformation.
In order to show such a property, we recall that, in the fun-
damental representation of Spq(1), any element T̂ is given

by a 2×2 matrix, with entries T̂ ji , satisfying the following
equation [33]

T̂ ir C
rs
q T̂

j
s = C

ij
q , (45)

whereCijq = ε
ij q−ε

ij
. Observing that (36) can be expressed

as

{
f̂ , ĝ
}
q
=
(
∂̂iĝ
)L
J ijq

(
∂̂j f̂
)R
, (46)

where Jq =−Cq′ , with q
′ =
√
q, according to the property

(45), it is easy to see that under the action of quantum
group Spq′(1), (46) transforms as

{
f̂ , ĝ
}
q
→
{
f̂ ′, ĝ′

}
q
=
(
∂̂′iĝ
′
)L
J ijq

(
∂̂′j f̂

′
)R
, (47)

where f̂ ′ ≡ f̂(x̂′, p̂′), ĝ′ ≡ ĝ(x̂′, p̂′), with

x̂i→ x̂′i = x̂j T̂ ij , (48)

under the assumption of the commutations between the
group elements and the plane elements.
It may be observed that (45) can be rewritten as

T̂ ir J
rs
q T̂

j
s = J

ij
q , (49)

which mimics, in this way, the classical expression (13),
where the matrix Jq plays the role of the symplectic unit
J introduced in (10) and recovered in the q→ 1 limit. The
q-deformed generator functions are then related to the en-
tries of the matrix Jq as

{
x̂i, x̂j

}
q
= ∂̂rx̂

i J rsq ∂̂s x̂
j , (50)

which also shows their invariance under the action of the
q-symplectic group Spq′(1).

5 q-deformed Hamilton equations

As a preliminary application of the q-PB derived in the
previous section, it is natural to investigate the effect due
to the q-commutativity of the coordinates of the phase
space on the time evolution of a classical object existing
in this space. We postulate that the dynamics in the de-
formed phase space is described, in analogy with classical
mechanics, by means of the following q-deformed evolution
equations written in the form

˙̂x(t) =
{
x̂(t), Ĥ(x̂, p̂)

}
q
, (51)

˙̂p(t) =
{
p̂(t), Ĥ(x̂, p̂)

}
q
. (52)

It is assumed that time enters in the q-generators as a nor-
mal parameter. The time derivative, indicated by a dot,
means ˙̂x= dx̂/dt, where dt is a C-number. In this way, the
q-commutative algebra of ˙̂x(t) and ˙̂p(t) and its q-calculus
are the same as that of dx̂(t) and dp̂(t). Ĥ(x̂, p̂) is the
q-Hamiltonian function, which is assumed to not depend
explicitly on time.
According to (36), the evolution (51) and (52) can be

written in the form

˙̂x(t) = q1/2
(
∂̂pĤ
)L
, (53)

˙̂p(t) =−q1/2
(
∂̂xĤ
)L
, (54)

which are the q-deformed Hamilton canonical equations.
It can be shown that, as a consequence of (51) and (52),

the time evolution of any dynamical function
f̂(x̂(t), p̂(t); t), depending on the generators x̂(t) and p̂(t),
can be described by means of the following evolution equa-
tion

d

dt
f̂(x̂, p̂; t) =

{
f̂(x̂, p̂; t), Ĥ(x̂, p̂)

}
q
+
∂

∂t
f̂(x̂, p̂; t) ,

(55)

where, the last term in the right-hand side takes into ac-
count the explicit dependence of f̂ on t.
In fact, we recall readily that the most general form of

a function f̂ ∈ Â can be written as a polynomial in the q-
variables x̂(t) and p̂(t)

f(x̂(t), p̂(t); t) =
∑
n,m

cnm(t) [x̂(t)]
n [p̂(t)]m , (56)

where cnm(t) are C-numbers that may be time-dependent
and we have assumed the x̂-p̂ ordering prescription that
can be always accomplished by means of (14). Let us con-
sider the generic term in (56). Its time derivative becomes

d

dt
(cnm x̂

n p̂m) = cnm [n]q
dx̂

dt
x̂n−1 p̂m

+ cnm [m]q q
−n dp̂

dt
x̂n p̂m−1+

∂ cnm

∂t
x̂n p̂m ,

(57)
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where (18) has been employed and where we have intro-
duced the q-basic number

[n]q =
q2n−1

q2−1
. (58)

By employing the equations of motion (51) and (52) in the
form dx̂/dt= iX̂H(dx̂) and dp̂/dt= iX̂H(dp̂), and account-

ing for the properties of the operators d and iv̂, we obtain

d

dt
(cnmx̂

np̂m) =cnm[n]iXH(dx̂)x̂
n−1p̂m

+ cnm[m]q
niXH(dp̂)x̂

np̂m−1+
∂cnm

∂t
x̂np̂m

=iXH
(
cnm
(
[n]dx̂x̂n−1p̂m

+[m]qndp̂x̂np̂m−1
))
+
∂

∂t
(cnmx̂

np̂m)

=iXH (d(cnmx̂
np̂m))+

∂

∂t
(cnmx̂

np̂m)

=
{
cnmx̂

np̂m, Ĥ(p̂, x̂)
}
+
∂

∂t
(cnmx̂

np̂m) ,

(59)

which, by linearity, implies (55).
Finally, we recall that, in standard mechanics, the

canonical transformations are a kind of coordinate trans-
formation mixing x and p in a way that preserves the
Hamilton structure of the dynamical system. An import-
ant property of the canonical transformations is that they
preserve the PB. Thus, this family of transformations, also
called symplectic transformations [31], are realized by the
symplectic group transformations. In the q-deformed case,
the situation is very similar because, as shown in the previ-
ous section, the q-PB’s are invariant under the action the
q-deformed symplectic group. In this sense, the quantum
group Spq′(1) is realized as a version of q-deformed canon-
ical transformation. It is outside the scope of this work to
discuss this important subject of the theory and its impli-
cations and they will be discussed in a future investigation.
In the following, we shall consider some non-relativistic

systems described by the q-Hamiltonian

Ĥ(x̂, p̂) =
p̂2

2m
+ V̂ (x̂) , (60)

wherem is an ordinaryC-number and V̂ (x̂) is the external
potential, which we assume to be an arbitrary polynomial
in the generator x̂, with C-numbers coefficients. Within
this formalism, let us discuss some examples.

5.1 The q-free particle

As a first simple example, we choose V̂ (x̂) = 0, a free par-
ticle. The q-Hamiltonian field is readily computed from
(34) and is given by

X̂H0 =
p̂

mq
∂̂x , (61)

where Ĥ0 = p̂
2/2m andmq = 2mq

3/2/[2]q.

The equations of motion are obtained by employing
(35) and read

˙̂x=
p̂

mq
, ˙̂p= 0 . (62)

These equations show that the effect of the deformation is
to rescale the mass m of the particle as the effective mass
mq. We remark that the q-Hamiltonian of the free par-
ticles Ĥ0 is a constant of motion of the system. In fact, by
using (55), it can be verified that {Ĥ0, Ĥ0}q = 0, so that
the Hamiltonian Ĥ0 can represent the energy of the free
particle that is conserved in time.
This fact, in the undeformed canonical theory, is merely

a consequence of the skew-symmetry of the PB: {f, g}=
−{g, f}, which implies {f, f}= 0. In the q-deformed case,
because the q-PB is no longer skew-symmetric, the q-PB
evaluated between the same function f̂ in general does not
vanish. An immediate consequence of this is that, contrary
to standard classical mechanics, in the q-deformed theory,
the Hamiltonian function in general is not conserved in
time. Such a situation has been encountered also in other
proposed q-deformed classical systems [27]. Let us investi-
gate the consequence in the next example.

5.2 The q-harmonic oscillator

We consider the harmonic oscillator with a potential

V̂h(x̂) =
1

2
mω2 x̂2 , (63)

where the angular frequency ω is a C-number.
The q-Hamiltonian field is evaluated as

X̂Hh =
p̂

mq
∂̂x−mq ωq

2 x̂ ∂̂p , (64)

where Ĥh = Ĥ0+ V̂h and ωq = ω [2]q/2 q
2, while the equa-

tions of motion become

˙̂x=
p̂

mq
, ˙̂p=−mq ω

2
q x̂ . (65)

The effect of the deformation is thus taken into account
only through a rescaling of both the massm→mq and the
angular frequency ω→ ωq of the harmonic oscillator. The
time evolution of Hamiltonian Ĥh can be determined by
employing (55) and we obtain

˙̂
Hh =

{
Ĥh, Ĥh

}
q
= q1/2 (q2−1)ω2q p̂ x̂ , (66)

which vanishes only in the q→ 1 limit. As a consequence,
the Hamiltonian Ĥh cannot be associated with the total
energy of the conservative system.
Nevertheless, the following function

Eq =
p̂2

2m
+
1

2 q2
mω2 x̂2 (67)
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is time conserved, Ėq = 0, and reduces, in the q→ 1 limit,
to the Hamiltonian of the harmonic oscillator. Hence, the
non-conservation of Ĥ is not necessarily fatal for the theory
due to the existence of other constants of motion that can
be identified with the energy of the system instead of Ĥ.
In other words, in the q-deformed theory, Ĥ is the genera-
tor of the equation of motion that now does not necessarily
coincide with the total energy of the system, but in corres-
pondence, a new constant of motion may be generated.

5.3 The general case

The previous result can be extended to the general case by
considering a q-deformed mechanical system governed by
a potential V̂ (x̂) defined by a polynomial series of x̂

V̂ (x̂) =
∑
n=1

cn x̂
n , (68)

with C-number coefficients. The q-Hamiltonian field is
given by

X̂H =
p̂

mq
∂̂x− q

−1/2
(
∂̂xV̂
)L
∂̂p , (69)

where (∂̂xV̂ )
L dx̂ = dx̂

(
∂̂xV̂
)R
, whereas the equation of

motion can be expressed in the form

mq ¨̂x= F̂q , (70)

with F̂q = −q−1/2 (∂̂xV̂ )L the q-deformed external force.
Again, the Hamiltonian is not conserved in time, whereas
the function

Eq =
p̂2

2m
+
∑
n=1

dn x̂
n , (71)

with dn = cn q
4−3n, reduces to the Hamiltonian function of

the system in the q→ 1 limit and fulfills the relation Ėq = 0.

6 Canonical quantization

Let us now compare, by means of canonical quantization,
the well-known q-deformed Heisenberg algebra with the al-
gebra (42) generated by the q-deformed PB. To start with
we recall that the q-deformed Heisenberg algebra reads [6–
8, 10]

[
x̃, p̃
]
q
= i Λ̃q , (72)

Λ̃q x̃= q
−1 x̃ Λ̃q , Λ̃q p̃= q p̃ Λ̃q , (73)

where
[
x̃, p̃
]
q
= q1/2 x̃ p̃− q−1/2 p̃ x̃ (74)

is the q-deformed commutator, and we have denoted by
a tilde the q-deformed quantum generators x̃ and p̃. The

extra generator Λ̃q in (72) and (73) plays the role of a di-
latator and, in the q→ 1 limit, reduces to the identity op-
erator [7, 37].
As it is known, in the undeformed case, the simplest

canonical quantization prescription is given by identifying
the position variable x with the corresponding multiplica-
tive operator x and the canonically conjugate variables p is
assumed to be proportional to the space derivative accord-
ing to the rule

x→ x , p→ p≡−i ∂x . (75)

At the same time, the undeformed PB is replaced with the
undeformed commutator

{
x, p
}
= 1⇔

[
x, p
]
= i , (76)

where [x, p] = xp−px. In analogywith this scenario, it ap-
pears natural to impose, within the q-deformed framework,
the following quantization rule on the q-variables

x̂→ X̃ , (77)

p̂→ P̃ ≡−i ∂̂X̃ , (78)

and to replace the q-PB with the q-deformed commuta-
tor (74).
It should be observed that, contrary to the q-deformed

classical theory developed starting from the two-dimen-
sional q-deformed calculus, the q-deformed quantum me-
chanics is spanned in the one-dimensional configuration
space. This requires us to consider the one-dimensional q-
deformed calculus generated by the elements x̂, ∂̂x and dx̂,
which differs from the corresponding one in two dimensions
introduced in Sect. 3. In particular, the Leibniz rule now
reads [5]

∂̂xx̂= 1+ q x̂ ∂̂x , (79)

which differs from the last formula in (16).
Let us observe that, due to (79), assuming X̃ a Her-

mitian quantity, the prescription (78) deals with a non-
Hermitian definition of momentum. In accordance with
current literature, we can define a physical momentum

p̃=
1

2

(
P̃ + P̃ †

)
, (80)

where the Hermitian conjugation of ∂̂X is defined by

∂̂†
X̃
=−q−1/2 Λ̃q ∂̂X̃ , (81)

and the unitary operator Λ̃†q = Λ̃
−1
q takes the expression

[7, 37]

Λ̃q = q
−1/2

[
1+(q−1)X̂ ∂̂X̃

]−1
. (82)

After the redefinition

x̃=
2 q

1+ q
X̃ , (83)
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it is easy to verify that the definitions (80), (82) and (83)
fulfil (72) and (73). Thus, by posing formally

x̂→ x̃ , p̂→ p̃ ,
√
q→ i Λ̃q , (84)

we can state the following correspondence
{
x̂, p̂
}
q
=
√
q⇔
[
x̃, p̃
]
q
= i Λ̃q , (85)

among the q-PB between the classical space phase vari-
ables and the q-commutator between the corresponding
quantum operators.
Finally, by taking the Hermitian conjugate of (72), ac-

counting for the unitarity of Λ̃q, we obtain
[
p̃, x̃
]
q
=−i Λ̃−1q . (86)

We can verify that (85) and (86) are completely consistent
with (42), under the correspondence (84). Equivalently, we
can verify that the relation

{
x̂, p̂
}
q
=−
{
x̂, p̂
}−1
q
, (87)

which follows directly from (42), is replaced by

[
x̃, p̃
]
q
=−
[
x̃, p̃
]−1
q
, (88)

as can be seen by a direct calculation.
In light of the above prescriptions, starting from the

classical evolution equation (55), it appears natural to pos-
tulate the q-deformed Heisenberg equation for an operator
Õq as follows

dÕq
∂t
= i [Õq, H̃]q+

∂Õq

∂t
. (89)

7 Conclusion

In this paper, we have developed a q-deformed version of
the PB by generalizing, within the quantum groups frame-
work, the method based on the exterior calculus for the
definition of the classical PB. We have derived, in a sys-
tematic way, an expression of the q-PB that is substantially
equivalent to the one that we recently obtained in [30] by
following a different and more consistent method. The two
approaches differ in the following sense. In the previous
one [30], the expression for the q-PB was conjectured by re-
quiring the invariance of the q-PB under the action of the
symplectic group Spq(1), leading to the q-deformation of
the phase space, whereas in the present investigation, only
the non-commutative q-deformation of the phase space has
been imposed and the q-PB has been obtained as a con-
sequence of q-calculus. It has been shown that the new
version of the deformed bracket is still invariant under the
action of the q-symplectic group of transformations Slq′(2)
with q′ =

√
q.

We have discussed some properties of the q-deformed
PB and we have presented some elementary examples to il-

lustrate how a possible q-deformed classical mechanics can
be introduced. It has been shown that, in contrast to the
undeformed case, the q-Hamiltonian, which is the genera-
tor of the evolution equation, is in general not conserved in
time and cannot be identified with the total energy for con-
servative systems. However, a suitable function, reducing
to the Hamiltonian function in the q→ 1 limit and remain-
ing constant during the evolution of the system, has been
obtained for the examples studied. These properties, re-
lated to derivation of the q-PB given in (36), are the most
relevant results of this paper.
Finally, we have discussed a possible quantization

method in the q-deformed picture. Based on the standard
method consisting of the replacement of the (undeformed)
PB for canonically conjugate variables with the (unde-
formed) commutator for the corresponding quantum oper-
ator, we have postulated a similar scheme by replacing the
q-PB for quantum conjugate variables with the q-deformed
commutator of the corresponding q-deformed quantum
operators.
In conclusion, we would like to mention the possible ap-

plications of the q-deformed classical mechanics that we
have developed to the study of some relevant physical phe-
nomenologies and in particular to the framework of ther-
mostatistics [23], where it could lead to a generalization of
the theory in a manner similar to what the classical Tsal-
lis’ thermostatistics does with respect to the Boltzmann–
Gibbs theory [22].
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